
 

Inverted 
Pendulum 

 

 

ME2240 

Project Report 
Source: https://github.com/souryavarenya/Self-Balancing-bot 

Video: https://www.youtube.com/watch?v=0pzGdVTDJ8c 

 

 

 

 

Mentored by 

Prof. Sathyan S. 

Department of Mechanical Engineering 

Indian Institute of Technology, Madras 

 

Team Members 

Sourya Varenya, ME14B065 

Sirish S., ME14B060 

Ajay Rawat, ME14B100 

Ashutosh Jha, ME14B148 

 

 

https://github.com/souryavarenya/Self-Balancing-bot
https://www.youtube.com/watch?v=0pzGdVTDJ8c&feature=youtu.be


Abstract 

 

Everything around us involves physics and modelling the system is of 
a huge importance. Here, we model, analyse and construct a self-
balancing robot which lets us understand the response of such system. 
This project revolves over the idea of an inverted pendulum, where a 
cart responds to the movement of the pendulum to compensate the fall 
of it. The most crucial part of this project is the tuning of the PID 
controller used to control the speed of the motors. 

 

 

System Modelling 

 

The equations for x and θ were developed by drawing the free-body 
diagrams of the cart and the pendulum. 

 

 
Image 1: Free Body Diagram of the pendulum [1]  

 

The governing equations[2] of the physics are as follows: 

𝑥̈ =
1

𝑀
∑ 𝐹𝑥

𝑐𝑎𝑟𝑡
=

1

𝑀
(𝐹 − 𝑁 − 𝑏𝑥̇) 

𝜃̈ =
1

𝐼
∑ 𝜏

𝑝𝑒𝑛𝑑
=

1

𝐼
(−𝑁𝑙 cos 𝜃 − 𝑃𝑙 sin 𝜃) 



Solving the equations for N and P, we get 

 

𝑁 = 𝑚(𝑥̈ − 𝑙𝜃̇2𝑠𝑖𝑛𝜃 + 𝑙𝜃̈𝑐𝑜𝑠𝜃) 

𝑃 = 𝑚(𝑙𝜃̇2𝑐𝑜𝑠𝜃 + 𝑙𝜃̈𝑠𝑖𝑛𝜃) + 𝑚𝑔 

 

Similarly considering the F.B.D. of the wheels alone, 

Image 2: Free Body Diagram of the wheel  

 

𝐹𝑟𝑒𝑠𝑡. = 2 (𝜏 −
𝐼𝑤ℎ𝑒𝑒𝑙  𝑥̈

𝑅
) 

The total force on the cart is given by 𝐹 =  𝐹𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 + 𝐹𝑟𝑒𝑠𝑡𝑜𝑟𝑖𝑛𝑔 

where the input to the system is 𝐹𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 which is set to an impulse. 
 

 

Simulations 

 

Constructing a single transfer function for the whole system is one way 
of modelling but requires linearization since the system is non-linear. 

We are making use of Simulink which doesn’t require linearization.  

 

The upper half of the system model shows the PID control. The error 
from set angle (i.e. pi) is passed as a parameter to the PID block. The 
PID block in turn outputs a value from which when multiplied by a 
factor of the full scale torque (0 corresponds to 0 torque and 255 to full 
scale torque) is the output of the motor. 

 

𝛼 

𝜏 

𝑓 



 

 

Image 3: Simulink model of Inverted pendulum.  

 

 

The equations are then modelled subsequently in the 𝑓(𝑢) blocks and 

labelled. The integrator blocks integrate 𝑥̈ and 𝜃̈ to 𝑥 and 𝜃 
respectively, which are our outputs and observed on the scope. 

(We haven’t observed x as the problem statement only wanted us to 
make sure the bot was stable. No conditions on the position of bot were 
imposed.) 

 

Image 4: Overall Simulink model.  



We have chosen the PID controller. For finding 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑, we make 

use of the auto-tune functionality.  

 

Image 5: PID Auto-tune Results 

Due to the exclusion of transfer function of the motor and 

approximations, instead of choosing 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 values directly into 

the code, we chose to maintain the ratios of 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 instead. 

 

Image 6: System’s Angle Response for an Impulse 



Chassis and Components 

 

The Chassis basically consists of two plates, entirely built with 
plexiglass. As you can see in the Image 7, the two motors are mounted 
onto the chassis using L clamps. Two 9V radio batteries were used and 
place at a low level close to the motors as in the Image 8. All the wires 
from the motors were neatly insulated using heat shrinks. 

 

Image 7: Overview of Components used 

 

 

Image 8: Self Balancing Robot in action 



Electronics 

 

The PCB underwent several iterations in design, size and placement of 
components. The ATmega 328P PU microcontroller was used instead 
of the entire Arduino. This massively reduced the clutter and was very 

compact and as small as 10cm×6cm 

 

 

Image 9: Three generations of boards, first and second failed 

 

 

 

Image 10: Design of Final PCB 

 



The PCB majorly housed the following components and their 
peripherals:  

 

MPU6050: 6 axis inexpensive IMU with angular 
velocities and linear accelerations. 

 

L293D: Motor Driver for scaling the 0-5V PWM 
output to 0-9V with sufficient currents 

 

ATmega 328P PU: 8 Bit AVR Microcontroller 
from Atmel, running at 16.00 MHz, Programmed 
using Arduino IDE. 
  

IC 7805: Voltage regulator for powering Arduino from 9V 
battery at 5V 

 

 

Code 

 

In this section, we will take a look at how the code is structured. For 
obtaining the angle output from the MPU6050, an I2C library is used. 
The raw values from the gyro sensor are prone to drift while those from 
the accelerometer are fluctuating. This code utilises a linearized, 
optimized complementary filter, which combines angle from 
accelerometer and gyroscope data to give accurate and fast angle 
output. 

The angle input is fed to the PID controller as an error and 𝐾𝑝, 𝐾𝑖 

and 𝐾𝑑 have been set to the values proportional to the simulation 
results. To stabilize a bit more, we have played around with the tuning 
parameters. There is still a scope to optimize the stability of the system. 

The code can be found on this github repository: 

https://github.com/souryavarenya/Self-Balancing-bot 

 

https://github.com/souryavarenya/Self-Balancing-bot


Conclusion 

 

The transfer function model that has been used in the project shows 
satisfactory results in practice. The inverted pendulum is seen to 
respond well in the presence of external disturbances as well. We also 
conclude that the modelling of the equations in Simulink helps us to 
determine satisfactory ratios of values even in absence of information 
like the transfer function of the wheel. 

All in all, the both the mechanical aspects such as the placement of 
centre of gravity and the electrical aspects work hand-in-hand to 
provide the stability to the inverted pendulum. 

 

 

Future Scope of the Project 

 

There are many more exciting applications of this particular project: 

 We have used Transfer Function approach in our bot. There are 
few other approaches which we came across while researching on 
the theory such as State-Space Modelling, Polynomial functions 
which could possibly provide better stability. 

 Another cool application of this is the stabilising of air-borne 
drones using quadrupeds. A TED talk for the same was shown in 
the class. 
 
 

References 

 

[1] 
http://ctms.engin.umich.edu/CTMS/Content/InvertedPendulum/Simulink/Modeling/f

igures/pendulum2.png 

[2] 
http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum&section=

SimulinkModeling 

 

http://ctms.engin.umich.edu/CTMS/Content/InvertedPendulum/Simulink/Modeling/figures/pendulum2.png
http://ctms.engin.umich.edu/CTMS/Content/InvertedPendulum/Simulink/Modeling/figures/pendulum2.png
http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum&section=SimulinkModeling
http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum&section=SimulinkModeling


The Team 

 

 


