Inverted
Pendulum

ME2240
Project Report

Source: https://github.com /souryavarenya/Self-Balancing-bot

Video: https://www.youtube.com/watch?v=0pzGdVTD.J8¢

Mentored by
Prof. Sathyan S.

Department of Mechanical Engineering

Indian Institute of Technology, Madras

Team Members
Sourya Varenya, ME14B065
Sirish S., ME14B060
Ajay Rawat, ME14B100
Ashutosh Jha, ME14B148

https://github.com/souryavarenya/Self-Balancing-bot
https://www.youtube.com/watch?v=0pzGdVTDJ8c&feature=youtu.be

Abstract

Everything around us involves physics and modelling the system is of
a huge importance. Here, we model, analyse and construct a self-
balancing robot which lets us understand the response of such system.
This project revolves over the idea of an inverted pendulum, where a
cart responds to the movement of the pendulum to compensate the fall
of it. The most crucial part of this project is the tuning of the PID
controller used to control the speed of the motors.

System Modelling

The equations for x and 8 were developed by drawing the free-body
diagrams of the cart and the pendulum.

P
A
mg
N { N
F 0 [friction
_
P =bx

O OL_,,

Image 1: Free Body Diagram of the pendulum [1]

The governing equations? of the physics are as follows:

1 1
i=— F,=—(F—N—bx
MEcartx M()

. 1 1
9=—Z T =—=(—Nlcos8 — Plsin0)
I pend I

Solving the equations for N and P, we get

N = m(¥ — 10?%sinf + 16cosh)
P =m(l6%cosh + l8sind) + mg

Similarly considering the F.B.D. of the wheels alone,

—A

f
Image 2: Free Body Diagram of the wheel

Iwheel X)
R

The total force on the cart is given by F = Fgisrurpance + Frestoring
where the input to the system is Fyisturpance Which is set to an impulse.

Frese. = 2 <T -

Simulations

Constructing a single transfer function for the whole system is one way
of modelling but requires linearization since the system is non-linear.

We are making use of Simulink which doesn’t require linearization.

The upper half of the system model shows the PID control. The error
from set angle (i.e. pi) is passed as a parameter to the PID block. The
PID block in turn outputs a value from which when multiplied by a
factor of the full scale torque (0 corresponds to 0 torque and 255 to full
scale torque) is the output of the motor.

Set Angle

FID Contra

PID{=)

FID to

ZTorque in

kgm

Converting

Tuheel/R

[ey |

Force

w Flu)
xddot.

Integratar

o 1 |xdot
>
5

1 |x
s

Integratar?

Pozition

- Flu)

thetaddot

Integratorl

| s

Integrator3

JT‘ thetadot _’T‘theta -
La i Ll w2)

Angle

fluy

Flul P

i
P

Image 3: Simulink model of Inverted pendulum.

The equations are then modelled subsequently in the f) blocks and
labelled. The integrator blocks integrate # and 6 to x and @

respectively, which are our outputs and observed on the scope.

(We haven’t observed x as the problem statement only wanted us to
make sure the bot was stable. No conditions on the position of bot were

imposed.)

L.

Dizcrete
Impulse

Force

Image 4:

¥

Fozition

Faorce

Angle

Subzyztem

Pozition

Angle

Overall Simulink model.

Scope

We have chosen the PID controller. For finding K,,, K; and K, we make
use of the auto-tune functionality.

® Function Block Parameters: PID Controller &9 1y = 1) 5:06PM {3
PID Controller 2

This block implements continuous- and discrete-time PID control algorithms and includes advanced features such as anti-windup, external reset, and signal tracking. You can tune the PID
gains automatically using the "Tune..." button (requires Simulink Control Design).

Controller: [PID ~ Form: Parallel -

Time domain:

® Continuous-time
Discrete-time

Main | PID Advanced = Data Types State Attributes
Controller parameters

Proportional (P): | 12565.5502292727 = Compensator formula
integral (1): 3971.03666783469
Derivative (D): 706.177962309313 i

s

Filter coefficient (N): 385.834491044417 1+ N .

Tune...

Initial conditions
Source: internal
Integrator: 0

Filter: 0

Extemal reset: none

Ignore reset when linearizing
X Enable zero-crossing detection

" Cancel Help Apply
Image 5: PID Auto-tune Results

Due to the exclusion of transfer function of the motor and
approximations, instead of choosing K,,, K; and K, values directly into

the code, we chose to maintain the ratios of K, K; and K, instead.

Image 6: System’s Angle Response for an Impulse

Chassis and Components

The Chassis basically consists of two plates, entirely built with
plexiglass. As you can see in the Image 7, the two motors are mounted
onto the chassis using L. clamps. Two 9V radio batteries were used and
place at a low level close to the motors as in the Image 8. All the wires
from the motors were neatly insulated using heat shrinks.

150 rpm DC motors
Mounted on base

Custom soldered PCB,
housing all electronics

Plexiglass chassis top with
ring for holding ball

-

Image 8: Self Balancing Robot in action

Electronics

The PCB underwent several iterations in design, size and placement of
components. The ATmega 328P PU microcontroller was used instead
of the entire Arduino. This massively reduced the clutter and was very

compact and as small as 10cmx6cm

MPU6050

1.293D I:I Atmega 328P
Power IN

Motor Output

Image 10: Design of Final PCB

The PCB majorly housed the following components and their
peripherals:

MPUG6050: 6 axis inexpensive IMU with angular
velocities and linear accelerations.

ﬁ L293D: Motor Driver for scaling the 0-5V PWM
output to 0-9V with sufficient currents

ATmega 328P PU: 8 Bit AVR Microcontroller
from Atmel, running at 16.00 MHz, Programmed m
using Arduino IDE. :

% IC 7805: Voltage regulator for powering Arduino from 9V
battery at bV

Code

In this section, we will take a look at how the code is structured. For
obtaining the angle output from the MPUG6050, an I*C library is used.
The raw values from the gyro sensor are prone to drift while those from
the accelerometer are fluctuating. This code utilises a linearized,
optimized complementary filter, which combines angle from
accelerometer and gyroscope data to give accurate and fast angle
output.

The angle input is fed to the PID controller as an error and K,, K;

and K; have been set to the values proportional to the simulation
results. To stabilize a bit more, we have played around with the tuning
parameters. There is still a scope to optimize the stability of the system.

The code can be found on this github repository:
https://github.com /souryavarenya/Self-Balancing-bot

https://github.com/souryavarenya/Self-Balancing-bot

Conclusion

The transfer function model that has been used in the project shows
satisfactory results in practice. The inverted pendulum is seen to
respond well in the presence of external disturbances as well. We also
conclude that the modelling of the equations in Simulink helps us to
determine satisfactory ratios of values even in absence of information
like the transfer function of the wheel.

All in all, the both the mechanical aspects such as the placement of
centre of gravity and the electrical aspects work hand-in-hand to
provide the stability to the inverted pendulum.

Future Scope of the Project

There are many more exciting applications of this particular project:

e We have used Transfer Function approach in our bot. There are
few other approaches which we came across while researching on
the theory such as State-Space Modelling, Polynomial functions
which could possibly provide better stability.

e Another cool application of this is the stabilising of air-borne
drones using quadrupeds. A TED talk for the same was shown in
the class.

References

[1]
http://ctms.engin.umich.edu/CTMS/Content /InvertedPendulum/Simulink /Modeling /f
igures/pendulum?2.png

2]

http://ctms.engin.umich.edu/CTMS /index.php?example=Inverted Pendulum§ion=
SimulinkModeling

http://ctms.engin.umich.edu/CTMS/Content/InvertedPendulum/Simulink/Modeling/figures/pendulum2.png
http://ctms.engin.umich.edu/CTMS/Content/InvertedPendulum/Simulink/Modeling/figures/pendulum2.png
http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum§ion=SimulinkModeling
http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum§ion=SimulinkModeling

The Team

w - b ‘E‘ e .‘ '
- & Vhjay 4 'Ezrish £

Sourya “NComponent : Chassis AShutOSh
Electronics. PCR "Placg‘me(\t — Manyfturing Simtilink modelfings

Programhiing w v Tuning
g i = 4
— - My,

7 - % The Bot
§
’,_J-,-.,-'I?.an down

